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a contradiction. If b =1 (mod 4), b # 1, then choosing x = biT’b gives (1), which
is impossible. As a consequence, f(—1) = f(1) =1 and f(x) =0 for x # +1. By
P(2,1), we have 0 = 2f(0) + f(3) = f(1) = 1, which is the desired contradiction.

0C224. Let n > 1 be an integer. An n x m-square is divided into n? unit
squares. Of these unit squares, n are coloured green and n are coloured blue, and
all remaining ones are coloured white. Are there more such colourings for which
there is exactly one green square in each row and exactly one blue square in each
column; or colourings for which there is exactly one green square and exactly one
blue square in each row?

Originally problem & of the 2014 South Africa National Olympiad.
We received 2 correct submissions. We present the solution by Kathleen Lewis.

There are more colourings with one green and one blue in each row. To see this,
think of first placing one green square in each row; for both methods there are n™
ways to do that. If we want to place a blue square in each row, there would be
(n—1)™ to accomplish this, since each row has one square already coloured green.
But if we wish to put a blue square in each column, the number of possibilities
depends on the arrangement already made of the green squares. Suppose that there
are a; blank squares in column ¢. Then the number of possible arrangements of the
blue squares is [[;-; a;. The total number of available squares is n> —n = n(n—1),
so Yoy a; = n(n —1). But for variables with a fixed sum, the product is greatest
when all the factors are equal. So, the maximum value of [];_; a; occurs when
a1 =ay=---=a, =n—1and [[j—; a; = (n — 1)™. In other cases, the product
would be smaller, even as small as zero if the green squares were all placed in the
same column. So the number of ways of placing a blue square in each column is
always less than or equal to the number of ways to place the blue squares with
one in each row.

OC225. Find the maximum value of real number k such that

a b c
1+ 9be + k(b —c¢)? * 1+ 9ca+ k(c—a)? * 14 9ab+ k(a — b)?
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holds for all non-negative real numbers a, b, c satisfying a + b+ ¢ = 1.
Originally problem 5 of the 2014 Japan Mathematical Olympiad.
We received 3 correct submissions. We present the solution by Arkady Alt.

Let k be such that the original inequality holds for any non-negative real numbers
a, b, ¢ satisfying a + b + ¢ = 1. Then, in particular, if a =0 and b = ¢ = 1/2, we
get
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Let k < 4. By Cauchy’s Inequality
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14 9abe (3 — k) + k(ab + be + ca)
1
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where p := ab + bc + ca and g := abc. We have

bt o)
p=ab+bc+ca < w=1/3,
9g = 9abe < (ab+ be+ ca) (a+b+c) =p,

9qg > 4p — 1.

(Schur’s Inequality >~ a(a —b) (a —¢) > 0 in p, g notation with normalization by
cyc

a+b+c=1).
If k <3, then

1
9B —k)+kp<pB—-k)+kp=3p<3.--=1

w

If 3 < k <4, then
1
993 —k)+kp<(4p—1)B3—k)+kp=k+3p(4 —k)-3< k+3-§ 4-k)-3=1.

Thus,
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for any k& < 4 and, therefore, the maximum value of & is 4.
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